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Steady flow between a rotating circular cylinder and fixed 
square cylinder 

By E. LEWIS 
Department of Mathematioe, University of Bristol, England 

(Reoeived 17 November 1978) 

Numerical solutions have been obtained for the problem of steady, incompressible, 
viscous flow between two infinite concentric cylinders, the cross-sections of the inner 
and outer cylinders being circular and square respectively. The square cylinder is 
fixed and the flow is driven by the rotation of the circular cylinder. Solutions are 
given for Reynolds number in the range 1-1400 and for several values of the parameter 
B, defined as the ratio of the side of the square to the diameter of the circle. 

1. Introduction 
Numerical techniques have been applied to many problems involving the solution 

of the incompressible Navier-Stokes equations but relatively few of these problems 
have involved flow in a closed region. The most notable exceptions are that of flow 
in a closed rectangular cavity (Kawaguti 1961; Burggraf 1966; Greenspan 1969, 1973) 
and that of flow between two concentric circular cylinders of finite length (Meyer 
1969; Rogers & Beard 1969). 

The present problem considers the flow between two infinite concentric cylinders, 
the outer one being square with side 2b and the inner being circular of radius a. The 
flow is driven by the rotation of the circular cylinder and by varying the parameter 
B = b/a it  is possible to generate very large eddies in the corners. One can also show 
the existence of a sequence of eddies dying away into the corner as described theo- 
retically by Moffatt (1964) and illustrated numerically by Pan & Acrivos (1967) and 
Collins & Dennis (1976). 

An interesting feature of the problem is the difficulty posed by the incompatibility 
of the boundaries, in that a uniform finite difference mesh in either Cartesian or 
polar co-ordinates does not allow all boundary grid points to lie on the intersection of 
grid lines. This problem is circumvented by using a non-uniform mesh so that boun- 
dary points are also grid points. This mesh complicates the finite difference equations 
considerably if second-order approximations for the derivatives are used, but this 
difficulty is overcome by first of all solving first-order finite difference approximations 
for the Navier-Stokes equations and then incorporating difference corrections to 
bring the accuracy up to second order. 

There is, too, the further complication of having to determine the correct value of 
the stream function on the circular boundary, assuming that the stream function on 
the square boundary is zero. This difficulty arises due to the multiple connectedness 
of the flow region. Any constant value of the stream function on the circular boundary 
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FIGURE 1. The oo-ordinate system. 

specifies a solution but the particular value needed is that which makes the pressure 
between the cylinders single-valued. 

The numerical procedure used is reasonably standard and similar to that used by 
such authors as Burggraf (1966), Greenspan (1969), Collins & Dennis (1975, 1976). 

2. The equations of motion 
Because of the geometry of the problem it is convenient to use both Cartesian and 

polar co-ordinates. A cross-section of the cylinders is shown in figure 1, where the 
common centre 0 is taken as the origin. The co-ordinates of any point P of the cross- 
section are given by (x’, y‘) or (r’, 0) where primes denote that the variables are di- 
mensional. If the velocity components a t  P are (u’, v’) then a stream function $‘ and 
vorticity can be defined by 

This definition of the vorticity is the negative of the usual definition, namely the 
curl of the velocity vector. In  terms of the radius a and angular velocity B of the 
circular cylinder, dimensionless variables are defined by 

u‘ = ay/ay’, = - av/ax‘, 5’ = aui/ayi - avi/axi. 

x‘ = ax, y‘ = ay, v‘ = ar, 

u’ = aRu, 

4‘ = a2Q$, 

so that the steady-state incompressible Navier-Stokes equations become 

v’ = aQv, 

g’ = $25, 



Steady $ow between two concentric cylinders 499 

H 
" 

0 T 
-1- 

B * 
FIUURE 2. Finite difference grid for the case n = 6, I = 6.  

where R is the Reynolds number a2Q/v, v being the coefficient of kinematic viscosity. 
The circular cylinder is given by r = 1 while the sides of the square are given by 

x = k B,  y = k B, where B is the non-dimensional parameter bla. There are, there- 
fore, two parameters for the problem: R representing the balance of viscous and 
inertia forces and B representing the geometry. 

The boundary conditions are 

a$ a+ 
ax aY 

$=1c.,, aconstant, -= -x, -= - y  on r =  1.  

The value of $c cannot be specified in advance and has to be determined as part 
of the problem. It is fixed by imposing the condition that the pressure be single-valued 
in the region between the two cylinders. 

Since the flow is periodic, period inl with respect to the angle 8, consideration of 
the flow region is confined to the first quadrant. Boundary conditions are therefore 
required on x = 0 and y = 0 and these are taken to be the usual periodic boundary 
conditions 

a$ x- 
aY 8X aY ax *(h,O) = - - (0 ,A)  and - (A,O) = - -(O,h) 

for all h such that 1 < h < B. 

(3) 

3. Finite difference equations 
The region PQRST under consideration is covered by a rectangular grid as shown 

in figure 2. This grid is obtained by first of all dividing the arc PT into n equal intervals. 
17-2 
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The grid points so formed on PT are then taken to define the mesh lines parallel to 
the x axis for the region PVTXT and those parallel to the y axis for the region PQUT. 
The remainder of the mesh is formed by dividing the intervals PQ and TS into I 
equal intervals of width h where Zh = B -  1.  This finite difference scheme has the 
disadvantage of being non-uniform but has the attraction of making all grid points 
on the boundary lie at  the intersection of mesh lines. 

If (x, y) is a typical grid point and h,, h,, h,, h, are the mesh lengths adjacent to (2, y) 
then, in the usual notation, the points (x, y), (x + h,, y), (x, y + h,), (z - h,, y), (z, y - h,) 
are denoted by 0 ,1 ,2 ,3 ,4 .  

Using central difference approximations, equation (1 a )  is approximated by 

Ao $0 - Ai $1 -4 $2 -4 $3 -4 @4 = - l o  ha& + co, ( 4 )  
where 

Ao=2h,h ,+2,  A - 2h2h4 A 2h4 A - 2h2h4 A ,  - 2h* 
hl h3 ‘ -h,(h,+h,)’  2 -  h,+h4’ , -h3(hl+h3)’  ha + h4 

and 

If C, is neglected the finite difference approximation (4) to ( 1  a )  is only first order 
while if C, is included the approximation is second order. C, is called the difference 
correction and its use is described in §4. 

To obtain the finite difference equation corresponding to ( l b ) ,  (a$/ax), and 
(8$/ay)o are first of all approximated by 

Then, using the technique of forward and backward differences (Greenspan 1969) or, 
as it is frequently referred to, upwind differencing (Roache 1976)) the finite difference 
equation for the vorticity is 

where the coefficients B, are 

+Rah4, B -- 2h2 
h2 + h4 - h,+h4’ 

a 2 0; 2h4 B ,  = - 

B2 = - 2h4 B 4 = - -  2h2 Rah,, a < 0; 
h, + h4’ h2 + h4 

B -  h4 2h2h4 + ~ p 3 4 ,  p 0 ;  
- h,(h, + h3)’ B3 = h3(h1 + h3) h3 
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and the difference correction Do is defined as 

where 
H = - h ,  if a 3 0 ,  H * = - h 3  if P > O ,  

H = h, if a < 0,  H* = h, if p < 0. 

The boundary conditions for (4) are 

$ = 0 on QR and RS, 

onPT,  ( 6 )  

periodic conditions on PQ and TS. 
To obtain the boundary conditions for the vorticity equation ( 5 )  consider first the 

boundary RS. If (x, y )  is a point on this boundary then $3 can be obtained as a Taylor 
series expansion about this point, namely 

Now 

$0 = (g)o = 0 

by (2a) and 

(g)o= -(;) 0 - 
But 

Q = (g)o- (g)o= - (g)o 
since u is constant along the wall RS. Therefore 

giving 

= p + O ( h )  

because h, = h for points (x, y) on RS. 
The boundary conditions for 5 on QR and PT can be obtained in a similar manner 

although on PT expansions are required in both the x and y directions (for $, and $,) 
which are subsequently added together to obtain (a2$/ax2), + (a2$/aya)o which is then 
replaced by go. 
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FIGURE 3. Mesh lengths for calculating difference correction at  point 0. 

Therefore the boundary conditions for (5) can be expressed as 

co = '$3 on RS, 

co = '$4 on QR, 

co = h a ( $ l - $ c ) + - ( ~ 2 - $ c ) + ~ + ~  2 2 on PT,  
1 hi hl hz 

(7) 

periodic conditions on PQ and TS.  
These boundary conditions have leading-error terms which are first order in the 

mesh lengths while equations (4) and (5) are second order provided the difference 
corrections are included. However, experience with using higher-order expressions 
to calculate the boundary vorticity has generally shown no significant improvement 
in the results and has often indicated convergence problems (Roache 1976) SO it was 
decided not to experiment with higher-order formulae. Such formulae would also 
have been extremely cumbersome for the boundary r = 1.  

Di'erence corrections 

With reference to figure 2, the set of all interior grid points plus those grid points on 
PQ, but excluding P and Q ,  is denoted by 8,. The set of grid points on the boundaries 
PT and QRX is denoted by R,. The derivatives comprising the difference corrections 
C, and D,in equations (4) and (5) respectively are calculated by the method of undeter- 
mined coefficients (Isaacson & Keller 1966). If ( x , y )  is the point at  which the correc- 
tions are to be determined, let it  and its neighbours in the x direction be numbered 
as in figure 3. Then a t  all points of S, the approximation for a2c/ax2 is 

2 2 
Yo = - (Yl+Y-l)- 

--l(hl+ h-1)' 71 = h y-l = h,(h, + h-,)' 
where 

For all points of S, n PQUT, but excluding those points which are one mesh length 
in the x direction from the boundary PT, the approximation for a3</;lax3 is 

where 

Yo = - (7-1 + 7 - 2  + 71 + YPL 
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while for points of S, which are adjacent to PT the approximation is 

where 
(a3CPx3), N Y - ~  Ll + yo go + y1 Cl + y2 C2 + y3  6, 

503 

7 0  * -(Y-l+?l+Y2+3/3)* 

No approximation for a3C/ax3 is necessary in the region URST since the mesh length 
in the x direction is uniform in this region. 

Similar approximations hold for the derivatives with respect to y where the region 
PVST now takes the place of the region PQUT. 

4. The numerical procedure 
The numerical procedure is obtained by an iterative procedure consisting of steps 

1-6 described below. This sequence of steps corresponds to the procedure for a given 
choice of $c. The method by which $c is chosen is described in 3 5. 

Step 1.  Set k = 0. Set initial values for $to), [(O) a t  all points of 8, (8, and Rh are as 
defined in 8 3). Set $(O) = $c on PT and $(O) = 0 on QRS. Set the difference corrections 
Co and Do to zero at all points of 8,. Set CORRECTION = FALSE. 

Step 2. Solve equation (4) for $(k+l) on 8, with 5 = 5(k) using the method of succes- 
sive over-relaxation (SOR) with relaxation parameter OJ,. The iteration is con- 
tinued until the maximum difference between respective values of $ on successive 
iterations is less than e, or the number of iterations is greater than 10. 

Step 3. Calculate the value <(;+I) at all points of R, using (7) with the recently cal- 
culated $(k+l) for $. Determine Qk+l) on the boundary using the smoothing formula 

p+l) = y p  + ( 1 - y )  C(t+”, 
where y is a positive constant < 1.  

Step 4. Solve equation (5) for Q k + l )  on 8, using SOR with relaxation parameter 0,. 
The convergence criterion is the same as that given in step 2 with e, taking the role 

Step 5. Determine max I$(k+l)-- ~ ( k ) l ,  max I [(k+l) - C(k)l over all points of 8, u R, and 
if these quantities are not less than S,, 6, respectively then set k = k + 1 and go to 
step 2. Otherwise, if CORRECTION is FALSE set k = k + 1 and go to step 6 else stop. 

Step 6. Using the value of $ and 5 just obtained calculate the difference corrections 

of €9. 

Go and Do On Sh. Set~CORRECTION = TRUE and go to Step 2. 

5. Results 
Results have been obtained for B = 1.05, 1.1 and 2.0 with R ranging from 1 to 500, 

1 to 1000 and I to 1400 respectively. The grid is determined by n and 1 as defined in 5 3. 
For B = 2 and R = 1, 200, 500, 700 grids defined by n = 10 ,1=  20; n = 1 = 20 and 
n = 20, 1 = 40 were tried. The results were compared by examining the maximum 



604 E .  Lewis 

R 
< h 

\ 

Grid 1 200 500 700 

n = 10 , l  = 20 0.4665 0.4527 0.4400 0.4325 
n = 2 0 , l  = 20 0.4655 0.4520 0.4405 0.4355 
n = 2 0 , l  = 40 0.4656 0.4539 0.4465 0.4423 

TABLE 1. Maximum values of $ for varying grid sizes. 

R 
r h > 

Grid 1 200 500 700 

n = 10, l  = 20 1.0206 1.2487 1.3088 1.3142 
n = 2 0 , l  = 20 1.0171 1.2467 1.3080 1.3294 
n = 20, I = 40 1.0186 1.2559 1.3430 1.3693 

TABLE 2. Maximum values of t; for varying grid sizes. 

values of $ and 5 and these are given in tables 1 and 2 respectively. These tables indi- 
cate that the results are qualitatively correct with the maximum stream function and 
maximum vorticity varying by at  most 3 yo and 4 yo respectively, the differences 
being largest for R = 700. Subsequently all results were obtained with n = 2 0 , l  = 40 
for B = 2 and n = 40 ,1=  20 for B = 1.05 and 1.1. 

Various values of the SOR parameters w$,wc were tried and it was found that 
w+ = 1.8, w, = 1.2 worked successfully in all cases. The parameters F$,  e5, S$: S, were all 
taken to be this being considered sufficient for the qualitative results being sought. 
The smoothness factor y was taken to be 0.95 for the coarser grids but it was found 
necessary to take y = 0.98 for the 20/40 and 40/20 grids. 

For each value of B a trial value of $, was obtained by considering the exact solution 
for the analogous problem of flow between concentric circular cylinders of radii 1 
and B (Batchelor 1967). For this problem the stream function on the inner cylinder 
is given by 

$ =  --+- I B2 InB. 
2 B2-1 

This value of q2 was always too small but was near enough the correct value to provide 
a good initial guess which guaranteed convergence for R = I .  Solutions were then 
obtained for neighbouring values of @, and for each of these solutions the pressure 
difference AP(r) between corresponding points on PQ and TS was calculated by 
integration of ap/ax and &play along lines parallel to the x and y directions respectively 
as represented typically by the pair of lines FG and GH shown in figure 2. The re- 
quired value of $, was that for which AP(r) = 0 but in practice this was impossible 
to achieve since AP(r) oscillated about zero. Instead the accepted value of $, was 
that for which max \AP(r)\ was minimized and it was possible to  determine this value 
of $, quite quickly since it was found that AP(r) varied almost linearly with $,. 
Table 3 gives the values of 1c., for B = 1-05, 1-1 and 2.0 and R in the range 1 to 1400. 
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FIGURE 4. Streamlines $ = constant for B = 1.05 and 
(a) R = 1, ( b )  R = 100, (c) R = 200, (d)  R = 500. 

B 
r A 

3 

R 1-05 1.1 2.0 

1 0.03231 0.06257 0.4656 
100 0.03236 0.06264 0.4577 
200 0.03248 0.06270 0.4539 
500 0.03286 0.06212 0.4465 

1000 - 0.06005 0.4375 
1400 - - 0.4314 

TABLE 3. Values of the stream function on the circular cylinder r = 1. 

Graphs for the streamlines and lines of constant vorticity for B = 1-05 and R = 1, 
100; 200, 500 are given in figures 4 and 5 ;  those for B = 1.1 and R = I, 100,200, 500, 
1000 in figures 6 and 7; and those for B = 2.0 and R = 1, 100, 200, 500, 1000, 1400 in 
figures 8 and 9. Since the flow is the same in each quadrant the streamlines and vor- 
ticity curves are shown only for the first quadrant except in the case B = 2.0, R = 200 
when the whole region is shown so that the swirl effect of the vorticity curves can be 
better appreciated. The solutions for fixed B and increasing R were obtained using 
the solution for some lower value of R as the initial guess. This procedure enabled 
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FIGURE 5. Curves of constant vorticity for B = 1.05 and 
(a) R = 1, (a) R = 100, (c) R = 200, (d )  R = 500. 

solutions to be obtained as far as R = 1400 in the case of B = 2 but it became necessary 
to proceed in smaller and smaller increments of R as R increased. In  the case of B = 1-1 
and 1.05 it  required excessively small increments in R to proceed further than R = 1000 
and R = 500 respectively and consequently no results have been obtained for higher 
values of R in these cases. 

For B = 2 there is little change in the distribution of $ between the cylinder r = 1 
and the streamline y2 = 0.1 as R increases although, for R = 1400, $c., is about 7 yo 
less than its value for R = I. The primary eddy in the corner, however, grows con- 
siderably and its intensity, measured as the maximum absolute value of $, increases 
from 0.00014 for R = 1 to 0.00271 for R = 500 varying only slightly thereafter as R 
increases to 1400 (see figure 10). 

The curvesof constant vorticity for B = 2.0 are symmetric at R = 1 but then become 
pulled around in the direction of rotation as R increases, forming ‘tongues’ of vor- 
ticity protruding into the fluid. This swirl effect is particularly noticeable for R = 200. 
As R increases further these ‘tongues’ of vorticity become confined in a narrower 
and narrower band enclosing the circular cylinder whilst outside this band a region 
of flow develops for which the vorticity curves are almost circles centred on the origin. 
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FIQURE 6. Streamlines @ = constant for B = 1.1 and (a) R = 1, 
( b )  R = 100, (c) R = 200, (d )  R = 600, (e) R = 1000. 
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FIGURE 7 .  Curves of constant vorticity for B = 1.1 and (a) R = 1, 
( b )  R = 100, ( c )  R = 200, ( d )  R = 500, ( e )  R = 1000. 
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I 

FIQURE 8 (a), (b ) ,  (c). For legend BW p. 510. 

In  this region the flow behaves very much like that for flow between concentric cir- 
cular cylinders. In  fact in this latter case, for cylinders of radii r = 1 and r = 2, the 
vorticity is everywhere constant and of value 213 whilst for the present, problem with 
R = 1400 there is clearly a large region with vorticity between 0.6 and 0.7. The 
occurrence of a large region of fluid between the cylinders for which the vorticity is 
approximately constant is in accordance with the theory of Batchelor (1956). 

The results for B = 1.05 and B = 1.1 are similar to each other. In  each case there is 
little change in the streamlines or the size of the primary corner eddy as R increases 
although the shape of the separating streamline changes, particularly near the points 
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FIQURE 8. Streamlines I) = constant for B = 2.0 and (a) R = 1, ( b )  R = 100, 
(c) R = 200, (d )  R = 500, (e) R = 1000, (f) R = 1400. 

-0.02 -0.01 

-0.0 1 
-0.0 1 

-0.02 

l i ’ I a u ~  9 (a), (b).  For legendsea p. 511. 

of separation and attachment. Furthermore, the intensity of the corner eddy falls 
considerably, as shown in figure 10, and this behaviour is in direct contrast to that 
for B = 2. 
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FIU~RE 10. Variation of the intensity of the primary eddy with 

R :  X ,  B = 1.05; A ,  B = 1.1; 0, B = 2.0. 

The variation of the vorticity curves with increasing R is not as marked as in the 
case of R = 2 though the curves still become distorted in the direction of rotation. 
The magnitude of the vorticity is considerably greater for both B = 1.05 and 1-1 
than it is for B = 2, the maximum vorticity being about 39-0 and 19.0 respectively 
compared with about 1.3 for B = 2. 

In  the corner region, Moffatt (1964) has shown that a sequence of eddies dying away 
into the corner exists and this behaviour has been verified numerically by Pan & 
Acrivos (1967) and Collins & Dennis (1976). In the present investigation the second 
eddy is just discernible but this and further eddies could have been exhibited more 
clearly by using the mesh refinement technique of Collins & Dennis. 

The author wishes to thank Professor M. H. Rogers for originally suggesting the 
problem and for his helpful discussions. 
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